

IV Semester B.A./B.Sc. Examination, May 2017 (CBCS) (Fresh + Repeaters) (2015 – 16 and Onwards) MATHEMATICS (Paper – IV)

Time: 3 Hours Max. Marks: 70

Instruction: Answer all Parts.

PART-A

Answer any five questions.

(5×2=10)

- 1. a) Define normal subgroup of a group.
 - b) If f: (G,o) → (G',*) is a homomorphism then prove that f(e) = e' where e and e' are the identity elements of G and G' respectively.
 - c) Calculate a_0 in the Fourier series of $f(x) = e^x$ in $(-\pi, \pi)$.
 - d) Write Taylor's series of the function f(x, y) about the point (a, b).
 - e) Find L [1 2e3t].

000

- f) Find $L^{-1} \left[\frac{s-1}{(s-1)^2 + 9} \right]$.
- g) Find the particular integral of $(D^2 + 1) y = \sin 3x$.
- h) Reduce the equation $y_2 2 \tan x y_1 + 5y = 0$ to normal form.

PART-B

Answer one full question.

(1×15=15)

- 2. a) If $f:(Z,+) \to (2Z,+)$ is defined by f(x)=2 x, \forall $x \in Z$, then show that f is an isomorphism.
 - b) If $f: G \to G'$ be an isomorphism of a group G onto G' then prove that $Kerf = \{e\}$ if and only if f is one-one.

c) If H is a subgroup of G and K is a normal subgroup of G then prove that H \(\cap\)K is a normal subgroup of G.

OR

3. a) If H is a normal subgroup of G then prove that G/H is a group w.r.t. the binary operation defined by

 $H_a \cdot H_b = H_{ab}, \forall H_a, H_b \in G/H$.

- b) If $f: G \to G'$ be a homomorphism of a group G onto G' with Kernel K, then prove that K is a normal subgroup of G.
- c) Show that the mapping $f: (R, +) \to (R^+, \bullet)$ defined by $f(x) = e^x$, $\forall x \in R$, is an isomorphism. (R = set of reals and R⁺ = set of positive reals).

VISVIDENCE DE PART-C MENT MARCHEN DE DIE

Answer any two full questions.

(2×15=

- 4. a) Obtain the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$.
 - b) Find the half range cosine series of f(x) = 2x 1 in (0, 2).
 - c) Expand ex siny in powers of x and y upto second degree terms.

OR

- 5. a) Find the extreme values of the function f(x, y) = xy(1 x y).
 - b) A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimension of the box requiring least material for its construction.
 - c) Find the Fourier series of $f(x) = 1 x^2$ in (-1, 1).
- 6. a) i) Prove that $L[e^{at}] = \frac{1}{s-a}$.
 - ii) Find L [cosh (t). cos (2t)].
 - b) Express $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 6, & t > 2 \end{cases}$ in terms of unit step function and find L[f(t)].

c) Find
$$L^{-1} \left[log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$$
.

OF

7. a) Find L
$$\left[\frac{e^{-at} - e^{-bt}}{t}\right]$$
.

- b) Using convolution theorem find $L^{-1}\left[\frac{1}{(s^2+1)(s-1)}\right]$.
- c) Find $L^{-1} \left[\frac{s^2 + 3}{(s-1)^2 (s+2)} \right]$.

PART-D

Answer one full question.

(1×15=15)

- 8. a) Solve: $(D^2 2D + 1)y = \sinh(x)$.
 - b) Solve: $x^2y_2 2x(x + 1)y_1 2(x+1)y = x^3$ given that x is a part of complementary function.
 - c) Solve: $(D^2 + 2D + 4)y = e^x \sin x$.

OR

9. a) Solve:
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = \sin(\log x)$$
.

- b) Solve: $\frac{dx}{dt} = 3x 4y$, $\frac{dy}{dt} = x y$.
- c) Solve: $\frac{d^2y}{dx^2} + 9y = \sec 3x$ by the method of variation of parameters.